CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC)

NORTHERN ZONE JOINT EXAMINATIONS SYNDICATE (NZ-JES)

FORM FOUR PRE NATIONAL EXAMINATION AUG 2025

041

BASIC MATHEMATICS

MARKING SCHEME

SECTION A

•	a)
•	α,

2	432	648	540
2	216	324	270
2	108	162	135
2	54	81	135
3	27	81	135
3	9	27	45
3	3	9	15
3	1	3	5
5	1	1	5
·	1	1	1

GCF = 2 X 2 X 3 X 3 X 3 = 108

They will step together after 108 times (03 marks)

(b) Given: reduced percent = 10% + 30% = 40%

Remaining percent = 100% - 40% = 60%

The remaining length = remained percent x total length

$$=\frac{60}{100}x80cm$$

Therefor remained length is 48cm (03 marks)

2. (a)
$$(\frac{1}{16})^{x+3}(\frac{1}{32})^{-x} = 1$$

$$(\frac{1}{2})^{4(x+3)}(\frac{1}{2})^{5(-x)} = (\frac{1}{2})^{0}$$

$$(\frac{1}{2})^{4x+12}(\frac{1}{2})^{-5x} = (\frac{1}{2})^{0}$$

$$(\frac{1}{2})^{4x+12-5x} = (\frac{1}{2})^{0}$$

$$(\frac{1}{2})^{-x+12} = (\frac{1}{2})^{0}$$

$$-x+12 = 0$$

$$X = 12 \text{ (03 marks)}$$

(b) given

$$\log_{10} 40,500$$

$$\log_{10} 40,500 = \log_{10} (40,5 \times 100)$$

$$= \log_{10} 405 + \log_{10} 100$$

$$= \log_{10} 81 \times 5 + \log_{10} 100$$

$$= \log_{10} 81 + \log_{10} 5 + \log_{10} 100$$

$$= \log_{10} 3^4 + \log_{10} 5^1 + \log_{10} 10^2$$

$$= 4\log_{10} 3 + \log_{10} 5 + 2\log_{10} 10$$
But $\log_{10} 3 = 0.4771$ and $\log_{10} 5 = 0.6990$

$$= 4(0.4471) + 0.6990 + 2$$

$$= 1.9084 + 0.6990 + 2$$

$$= 4.6074$$

Therefore $\log_{10} 40,500 = 4.6074$ (03 marks)

3. (a) let Adela be A, Amina be B and Charles be C

$$A = \{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28 \ and \ 29\}$$

(i)
$$A \cap C = \{6,12,18 \text{ and } 24\}$$

Therefore numbers that were mentioned by Amina and Charles are {6,12,18 and 24} (02 marks)

(ii)
$$A \cup c = \{2,3,4,6,8,9,10,12,14,15,16,18,20,21,22,24,26,27 \text{ and } 28\}$$

Therefore numbers were mentioned by either Amina or Charles is 19 (02 marks)

(b)
$$n(A) = 9$$
 and $n(C) = 9$

$$P(C) = \frac{n(C)}{n(A)}$$

$$P(C) = \frac{9}{9}$$

Therefore the probability that a selected number was a multiple of 3 is 0.31 (02 marks)

4. (a) Given that a = 4i + 3j and b = 6i - 3j

Required to find values of h and k

If
$$h\mathbf{a} + k\mathbf{b} = 10i + j$$
,

$$h(4i + 3j) + k(6i - 3j)$$

$$4hi + 3hj + 6ki - 3kj = 10i + j$$

$$4hi + 6ki + 3hj - 3kj = 10i + j$$

$$(4h + 6k)i + (3h - 3k)j = 10i + j$$

by comparison

$$4h + 6k = 10$$
(1)

Solve by simultaneous eqn

$$h = \frac{6}{5}$$
 and $k = \frac{13}{15}$ (03 marks)

(b) Given the point A (k,4) and B(3,3k) is to be parallel to the line y - 3x - 4 = 0

Required the value of k

From
$$y - 3x - 4 = 0$$

Rearrange the eqn y = 3x + 4

$$m_1 = 3$$

For the parallel lines $m_1 = m_2$

then

$$3 = \frac{3k - 4}{3 - k}$$

cross multiplication

$$3(3-k) = 3k-4$$

$$9 - 3k = 3k - 4$$

$$9 + 4 = 3k + 3k$$

$$6k = 13$$

$$k = 2\frac{1}{6}$$
 (03 marks)

5. (a) Given that $A_1 = 5M^2$, $A_2 = 0.8M^2$ and $S_2 = 180CM$ (1.8M)

 S_1 is required

$$\frac{A_1}{A_2} = (\frac{S_1}{S_2})^2$$

$$\frac{5M^2}{0.8M^2} = (\frac{S_1}{1.8M})^2$$

$$6.25 = \frac{S_1^2}{3.24}$$

$$S_1^2 = 6.25x3.24$$

$$S_1^2 = 20.25$$

$$S_1 = \sqrt{20.25}$$

$$S_1 = 4.5m$$

Therefore the large height is 4.5m (02 marks)

(b) consider the triangle bellow

5(b) (i) proof: consider $\triangle ABC$ and $\triangle AMN$

$$M\hat{A}N = B\hat{A}C$$
 (common angle)

$$\widehat{AMN} = \widehat{ABC}$$
 (angle formed by parallel lines)

$$M\widehat{N}A = B\widehat{C}A$$
 (third angle of triangle)

Hence $\triangle ABC \sim \triangle AMN$ (AA similarity theorem) (02 marks)

(ii)
$$\frac{\overline{AB}}{\overline{AM}} = \frac{\overline{BC}}{\overline{MN}}$$

$$\frac{6cm}{4cm} = \frac{4.5cm}{\overline{MN}}$$

By crossing multiplication

$$\overline{MN} = \frac{4.5cmx4cm}{6cm}$$

Then

 $\overline{MN} = 3cm (02 \text{ marks})$

6(a) given A car travels 23km in 15minutes

Required how fast (i) In kilometer per hours?

Convert 15 minutes into hours

$$=\frac{15}{60}$$

= 0.25 hours

Then
$$speed = \frac{23km}{0.25hours}$$

$$speed = \frac{92km}{h}$$

therefore its going by 92km/h (02 marks)

(ii) in meter per second

Convert 23km into meter

$$23km = 23000m$$

Convert 15 minutes to second

15minutes = 900second

$$speed = \frac{distance}{time}$$

$$speed = \frac{23000m}{900seond}$$

$$speed = 25.56m/s$$

therefore its going by 25.56m/s (02 marks)

6(b) given

600 students for 20 days

(600 - 120)stdents take how many days?

Since number of students $\propto \frac{1}{number\ of\ days}$

Let number of student be s and number of days be d

$$s \propto \frac{1}{d}$$

$$s = \frac{k}{d}$$

Where k is proportionality constant

Then

$$k = sxd$$

$$k = 600x20$$

$$k = 12000$$

Give

s = 480 requred number of days taken

But

$$k = sxd$$

$$12000 = 480xd$$

$$d = \frac{12000}{480}$$

$$d = 25 days$$

therefore the number of days taken for 480 students is 25 (02 marks)

7(a) given, ratio of sacks of maize, millet and cassava in certain store is 6:7:3

there 42 sacks of millet. Required total sacks

from

$$sacks \ of \ millet = \frac{ratio \ of \ millet}{total \ ratio} xtotal \ sacks$$

$$42 = \frac{7}{16}xtotal\ sacks$$

$$total\ sacks = \frac{16}{7}x42$$

$$total\ sacks = 96$$

therefore total sacks is 96 (02 marks)

7(b) CASH ACCOUNT (1)

Dr Cr

Date	Particular	Folio	Amount	Date	Particular	Folio	Amount
1/1/2021	Capital	2	600,000	3	Purchases	3	400,000
4	Sales	4	300,000	5	purchase	3	100,000
8	sales	4	250,000	8	Salary	5	150,000
					Travel expen	6	120,000
					c/d		380,000
			1,150,000				1,150,000
1 february	balance	b/d	380,000				

(02 marks)

TRIAL BALANCE AS ENDED AT 31st January 2021

S/N	Account name	Dr	Cr
	Capital		600,000
	Cash	380,000	
	Purchases	500,000	
	Sales		550,000
	Salary	150,000	
	Traveling expenses	120,000	
		1,150,000	1,150,000

(02 marks)

8(a) The 20th term of an arithmetic progression is 60 and the 16th is 20. Find the sum of the first 40 terms

Given

$$A_{20} = 60$$

$$A_{16} = 20$$

$$n = 40$$

requred sum of 40 terms

$$S_n = \frac{n}{2}(2A_1 + (n-1)d)$$

Also

$$A_n = A_1 + (n-1)d$$

$$A_{20} = A_1 + (19)d$$

$$A_{16} = A_1 + (15)d$$

Then

$$60 = A_1 + (19)d \dots (eqn1)$$

$$20 = A_1 + (15)d \dots (eqn2)$$

solving by any simulteneous method $A_1 = -130 \ and \ d \ 10$

$$S_{40} = \frac{40}{2}(2(-130) + (40 - 1)10)$$

$$S_{40} = 2600$$

therefore sum of 40 terms is 2600 (03 marks)

b) Peter saved Tsh. 6,000,000/= in a saving bank whose interest rate was 10% compounded annually. Find the amount of money in account after 5 years.

Given

$$P = 6,000,000$$

$$R = 10\%$$

$$n = 5$$

$$t = 1$$

From

$$A_n = P\left(1 + \frac{Rt}{100}\right)^n$$

$$A_5 = 6,000,000 \left(1 + \frac{10x1}{100} \right)^5$$

$$A_5 = 9,663,060$$

Therefore the amount of money in account after 5 years is 9,663,060 (03 marks)

9(a) without using mathematical tables simplify $\frac{\sin 120^{0} + \cos 150^{0}}{2 \tan 240^{o}}$

$$\sin 120^0 = \sin(180^0 - 120^0)$$

$$sin120^0 = sin60^0$$

$$\cos 150^0 = -\cos(180^0 - 150^0)$$

$$\cos 150^0 = -\cos 30^0$$

$$tan240^0 = tan(240^0 - 180^0)$$

$$tan240^0 = tan60^0$$

Then

$$\frac{\sin 120^{0} + \cos 150^{0}}{2\tan 240^{o}} = \frac{\sin 60^{0} - \cos 30^{0}}{2\tan 60^{o}}$$
$$= \frac{\frac{\sqrt{3} - \sqrt{3}}{2}}{\frac{2}{2x}\sqrt{3}}$$

$$\frac{\sin 120^{0} + \cos 150^{0}}{2\tan 240^{0}} = 0 \text{ (03 marks)}$$

(b) An observer on top of a cliff 30cm above the sea level, view the ship on the sea level at an angle of depression of 45°. Find how far is the ship from the foot of the clif

$$tan45^0 = \frac{opposite}{adjacent}$$

$$tan45^0 = \frac{x}{30cm}$$

$$x = 30cm xtan 45^0$$

$$x = 30cm$$

Therefore the ship is 30cm from the foot of the clip (03 marks)

10. (a) let the numbers be x and y

Then
$$\frac{x+y}{2} = 7$$
 and $3(x - y) = 18$

$$x + y = 14$$
 and $x - y = 6$

Then solve by any simultaneous eqn

$$x = 10 \ and \ y = 4 \ (03 \ marks)$$

(b) given
$$x^2 - 8x + 7 = 0$$

By spiliting the middle term x = 7 or x = 1 (03 marks)

SECTION B

11(a) (i) To prepare frequency distribution table.

Class interval (C.I)	Class marks (X)	Frequency (F)
32 – 39	35.5	4
40 – 47	43.5	13
48 – 55	51.5	8
56 – 63	59.5	6
64 – 71	67.5	5
72 – 79	75.5	3
80 – 87	83.5	2
88 – 95	91.5	1
		N = 42

(03 marks)

(ii) Histogram and Frequency Polygon

CSSC-NZ JES PRE-NATIONAL EXAMS AUG 2025 BASIC MATHS FORM 4 MARKING SCHEME Page 11 of 17

11(b) Given;

$$F\hat{G}D = 180^{\circ} - F\hat{G}H$$
, But $F\hat{G}H = 84.5^{\circ}$ (01 mark) $F\hat{G}D = 180^{\circ} - 84.5^{\circ}$ $F\hat{G}D = 95.5^{\circ}$

Then; $F\hat{G}H = F\hat{E}D$ Exterior angle of a cyclic quadrilateral is equal to the inside opposite angle. (01 mark)

$$F\widehat{G}H = F\widehat{E}D$$
, but $F\widehat{G}H = 84.5^{\circ}$ and $F\widehat{E}D = 2m$

Then, $84.5^{\circ} = 2m$

$$\frac{2m}{2} = \frac{84.5^{\circ}}{2},$$

$$m = 42.25^{\circ} \dots \dots (01 \text{ mark})$$

Also, $F\hat{G}D = G\hat{D}E = F\hat{E}D = E\hat{F}G = 360^{\circ}$, Complete circle has 360°.

$$95.5^{\circ} + 3n - 10^{\circ} + 2m + 2n + 30^{\circ} = 360^{\circ}$$

$$5n + 200 = 360^{\circ}$$

$$5n = 160^{\circ} \dots (01 \text{ mark})$$

$$5n = 160^{\circ}$$
 ... (01 mark) $\frac{5}{5}n = \frac{160}{5}^{\circ}$, $n = 32^{\circ}$

 \therefore The value of $m = 42.25^{\circ}$ and $n = 32^{\circ}$... (01 mark)

12 (a) Solution;

 $A(0^{\circ}, 20^{\circ}W)$, $B(10^{\circ}N, 20^{\circ}W)$, speed = 16knots, time starting; 8: 00am Tuesday From; $\theta = 10^{\circ} - 0^{\circ}$

$$\theta = 10^{\circ} - 0^{\circ}$$

$$\theta = 10^{\circ} \dots \left(0\frac{1}{2} \text{ mark}\right)$$

Distance in nautical miles

Distance (d) = $\theta \times 60$

Distance (d) =
$$10^{\circ} \times 60$$

Distance (d) = $600nm$ $\left(0\frac{1}{2} \text{ mark}\right)$
From; $speed = \frac{distance}{time}$
Time = $\frac{distance}{speed}$ (01 mark)
Time = $\frac{600nm}{16nm/h}$
Time = $37.5hrs$ (01 mark)
Time = $37hours$ and 30 minutes

Then; 8:00am on Tuesday +37hours and 30 minutes= 9:30pm on Wednesday or 2130hours on Wednesday..... (01 mark)

∴ It will reach B at 9:30pm on Wednesday or 2130 hours on Wednesday (01 mark)

Let centre of the rectangular pyramid be M

From;
$$(\overline{QS})^2 = (\overline{QM})^2 + (\overline{MS})^2$$

 $(\overline{16})^2 = (\overline{4.4721})^2 + (\overline{h})^2$
 $h^2 = 16^2 - (\overline{4.4721})^2$
 $h^2 = 16^2 - 20$
 $h^2 = 256 - 20$
 $h^2 = 236$
 $h = \sqrt{236}$
 $h = 15.36cm$ (01 mark)

h = 15.36cm...(01 mark)

∴ The height of the pyramid is 15.36cm

(ii) Angle between SQ and the base QRWV

 \therefore The Angle between SQ and the base QRWV is 73.76°. (01 mark)

13(a) Solution

Image of the line 4x + 5y + 10 = 0, reflection in the line y - x = 0 i. e y = x

If
$$y = x$$
, then $\alpha = 45^{\circ}$
From: $5y = -4x - 10$

From;
$$5y = -4x - 10$$

 $\frac{5y}{5} = -\frac{4x}{5} - \frac{10}{5}$

$$\frac{5y}{5} = -\frac{4x}{5} - \frac{10}{5}$$
$$y = -\frac{4x}{5} - 2$$

For x – intercept y = 0

$$0 = -\frac{4x}{5} - 2$$

$$-\frac{4x}{5} = 2$$

$$-\frac{4}{-4}x = \frac{10}{-4}, x = -\frac{5}{2}$$

$$\frac{-4}{-4}x = \frac{10}{-4}, x = -\frac{5}{2}$$

$$\therefore x = \left(-\frac{5}{2}, 0\right) \quad \dots \quad \left(0\frac{1}{2} \text{ mark}\right)$$

For y – intercept, x = 0.

$$y = -\frac{4x}{5} - 2$$
$$y = -0 - 2$$

$$y = -0 - 2$$

$$y = -2$$

$$\therefore y = (0, -2) \quad \dots \quad \left(0 \frac{1}{2} \text{ mark}\right)$$

Now, finding the image of each point, but if y = x then $\alpha = 45^{\circ}$

For point
$$\left(-\frac{5}{2}, 0\right)$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 2 \times 45^{\circ} & \sin 2 \times 45^{\circ} \\ \sin 2 \times 45^{\circ} & -\cos 2 \times 45^{\circ} \end{pmatrix} \begin{pmatrix} -\frac{5}{2} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ \sin 90^{\circ} & -\cos 90^{\circ} \end{pmatrix} \begin{pmatrix} -\frac{5}{2} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -\frac{5}{2} \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \times -\frac{5}{2} + 1 \times 0 \\ 1 \times -\frac{5}{2} + 0 \times 0 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \\ -\frac{5}{2} \end{pmatrix} \dots \qquad (01 \text{ mark})$$

Also, for point
$$(0, 2)$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 2 \times 45^{\circ} & \sin 2 \times 45^{\circ} \\ \sin 2 \times 45^{\circ} & -\cos 2 \times 45^{\circ} \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ \sin 90^{\circ} & -\cos 90^{\circ} \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 \times 0 + 1 \times -2 \\ 1 \times 0 + 0 \times -2 \end{pmatrix}$$

Then, finding the equation of the line from the two points;

From;
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

 $m = \frac{-2 - 0}{0 - (\frac{-5}{2})} = -\frac{\frac{2}{5}}{2}$
 $\therefore m = -\frac{4}{5}$ (01 mark)

(Using first point to find the equation)

But from;
$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

 $-\frac{4}{5} = \frac{y - 0}{x + \frac{5}{2}}, \quad 5y = -4(x + \frac{5}{2})$
 $5y = -4x - \frac{20}{2}, \quad 5y = -4x - 10$
 $\rightarrow 5y + 4x + 10 = 0$

 \therefore The image will be 5y + 4x + 10 = 0 (01 mark)

13(b) Solution

$$\begin{pmatrix} 4 & -3 \\ k & 6 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 14 \end{pmatrix} \dots (02 \text{ marks})$$

Since the matrix do not have a solution, then determinant is equal to zero.

$$(4 \times 6) - (k \times -3) = 0$$

$$24 + 3k = 0$$

$$24 = -3k, \ \frac{24}{3} = -\frac{3k}{3}$$
$$k = -8$$

$$k = -8$$

 \therefore The value of k = -8 (03 marks)

14(a) (i) The ordered pairs belong to the relation R are $\{(1,2), (-3,4), (-8,0), and (-8,-3)\}$... (02 marks)

14(b) Solution

Table of constraints

Let type A be x and type B be y.

	Hours	Materials	Profit
Type A	3	6	4000
Type B	6	7	6000
	60	90	

Constraints/inequalities

$$x \ge 0$$
 and $y \ge 0$

Objective function f(x, y) = 4000x + 6000y (01 mark)

x and y intercept for each equation

Table value for

х	0	20
у	10	0

For

y	10) 0	
x	0	15	6x + 7y = 90
у	12.8	0	

<u>Table of results</u> (01 mark)

Corner points	Objective function $f(x, y) = 4000x + 6000y$	Total
A(0,0)	$4000 \times 0 + 6000 \times 0 = 0$	0
B(0, 10)	$4000 \times 0 + 6000 \times 10 = 60\ 000$	60 000
C(8,6)	$4000 \times 8 + 6000 \times 6 = 68,000$	68,000
D(15,0)	$4000 \times 15 + 6000 \times 0 = 60\ 000$	60 000

 $[\]therefore$ They should made 8 clothes of type *A* and 6 clothes of type *B* in order to make a profit of 68 000 shillings. (01 mark)